
IDE-assisted visualization of indebted OO
variability implementations

SPLC ‘22 – Graz, Austria
September 15, 2022

Johann Mortara − Philippe Collet – Anne-Marie Dery-Pinna

Université Côte d’Azur, CNRS, I3S, France

1

?

2

feature model

OO codebases use OO mechanisms to implement variability
in a single codebase

- inheritance
- overloading of methods and constructors
- design patterns

Undocumented
OO variability

implementations

Creation of complex zones in the system

⇒ understanding them is crucial to comprehend the codebase variability

Automatic identification of variability implementations in an OO codebase

3
Johann Mortara, Xhevahire Tërnava, Philippe Collet, Anne-Marie Dery-Pinna. Extending the Identification of Object-Oriented Variability Implementations using Usage
Relationships. SPLC 2021 - 25th ACM International Systems and Software Product Line Conference, Sep 2021, Leicester, United Kingdom. pp.1-8

metrics / properties

The reality of OO variability implementation

4

Variability implemented using mechanisms

The reality of OO variability implementation

5

Plot

Duplicated blocks: 3
Code coverage: 80%

Duplicated blocks: 2
Code coverage: 75%

drawPiePlot(): void

drawXYPlot(): void
drawPiePlot drawXYPlot

Duplications

Variability implemented without using mechanisms

Duplicated blocks: 25
Code coverage: 55%

⇒ technical debt

Variability implemented using mechanisms

6
VariCity

Displays variability implementations

Displays quality metrics

Displays variability implementations

Displays quality metrics
CodeCity

IDE

✔
✔

✘

✘

+

7

VariCity
+ CodeCity

IDE

+

Same metaphor but different representations → cognitive load

Displays variability implementations

Displays quality metrics
✔

✔

8
VariMetrics

IDE

+

Repeated switches between multiple environments

Displays variability implementations

Displays quality metrics
✔

✔

9

Integrated in the developer’s environment
Displays variability implementations

Displays quality metrics

✔

✔

VariMetrics-IDE

10

What can we use?

11

CodeCityVariCity

Displays variability implementations

Displays quality metrics

Displays variability implementations

Displays quality metrics

What can we use?

12

VariCity
Displays variability implementations

Displays quality metrics

Displays variability implementations

Displays quality metrics
CodeCity

IDE

✔

✔

✘

✘

What can we use?

13

CodeCityVariCity

Displays variability implementations

Displays quality metrics

Displays variability implementations

Displays quality metrics

What can we use?

14

CodeCityVariCity

Cumbersome to do!
- Same metaphor but different representations → cognitive load

- Switch between multiple environments is hard for developers

AND

+

Roberto Minelli, Andrea Mocci, and Michele Lanza. 2015. I Know What You Did Last Summer - An Investigation of How Developers Spend Their Time. In 2015 IEEE 23rd
International Conference on Program Comprehension. IEEE, 25–35.

VariCity: a visualization for OO variability implementations

Johann Mortara, Philippe Collet, Anne-Marie Dery-Pinna. Visualization of Object-Oriented Variability Implementations as Cities. 9th IEEE Working Conference on Software
Visualization (VISSOFT 2021), Sep 2021, Luxembourg (virtual), Luxembourg. ff10.1109/VISSOFT52517.2021.00017ff. ffhal03312487

Method overloads

Constructor overloads

Hotspots

Design pattern

Usage relationship

15

Limitations of VariCity

Daniele Wolfart, Wesley Klewerton Guez Assunção, and Jabier Martinez. 2021. Variability Debt: Characterization, Causes and Consequences. In XX Brazilian Symposium on
Software Quality. 1–10. 16

Variability debt

Potential identified causes:

- lack of knowledge of the implemented variability
- absence of traceability
- no known variability implementation mechanisms ⇒ artifact duplication + ↑ code complexity

Roberto Minelli, Andrea Mocci, and Michele Lanza. 2015. I Know What You Did Last Summer - An Investigation of How Developers Spend Their Time. In 2015 IEEE 23rd
International Conference on Program Comprehension. IEEE, 25–35. 17

OO variability implementations are prone to variability debt

”Technical debt caused by defects and sub-optimal solutions in the implementation of variability
management in software systems. […] Variability debt leads to maintenance and evolution
difficulties to manage families of systems or highly configurable systems.”

Need for identification and visualization

Identifying and visualizing technical debt in OO variability implementations

OO code quality metrics visualized in the form of a city

Richard Wettel and Michele Lanza. 2007. Visualizing software systems as cities. 4th IEEE International Workshop on Visualizing Software for Understanding and Analysis.
Frank Steinbrückner and Claus Lewerentz. 2013. Understanding software evolution with software cities. Information Visualization 12, 2 (April 2013), 200–216.

CodeCity Evo-Streets

attributes

attributes

methods

Grouping by
package

Street = package

Building = class
Width = class metric

Color:
quality metric

Color =
quality metric

18

FUUUUUUUUSION!

19

Configurable visualization of OO quality metrics on the variability
implementations

- Additional visual axes that can be combined to display
multiple metrics simultaneously

- Ranges of values for metrics are also configurable

VariMetrics

20
VariCity Red-green Saturation Cracks

Example of VariMetrics view

21

Project: GeoTools
Red-to-green color scale: cognitive complexity

Quantitative evaluation

Does VariMetrics allow to visualize indebted zones of variability implementations?

Visual observation on 7 medium to large open source variable systems written in Java

Determination of relevant VariMetrics visualizations:

- w.r.t. variability → some classes exhibit concentration of variability implementation mechanisms
- w.r.t. quality → some classes have quality issues

22

Quantitative evaluation

Does VariMetrics allow to visualize indebted zones of variability implementations?

Visual observation on 7 medium to large open source variable systems written in Java

Determination of relevant VariMetrics visualizations:

- w.r.t. variability → some classes exhibit concentration of variability implementation mechanisms
- w.r.t. quality → some classes have quality issues related to which metrics?

23

Determining relevant quality metrics

Daniele Wolfart, Wesley Klewerton Guez Assunção, and Jabier Martinez. 2021. Variability Debt: Characterization, Causes and Consequences. In XX Brazilian Symposium on
Software Quality. 1–10.

- System-level structure quality issues

- Code Duplication

- Lack of tests

- Out-of-date or incomplete documentation

- Architectural antipatterns

- Expensive tests

- Multi-version support

- Old technology in use

- Duplicate documentation

- Poor test of feature interactions

Different types of variability debt

24

Determining relevant quality metrics

Daniele Wolfart, Wesley Klewerton Guez Assunção, and Jabier Martinez. 2021. Variability Debt: Characterization, Causes and Consequences. In XX Brazilian Symposium on
Software Quality. 1–10.

- System-level structure quality issues

- Code Duplication

- Lack of tests

- Out-of-date or incomplete documentation

- Architectural antipatterns

- Expensive tests

- Multi-version support

- Old technology in use

- Duplicate documentation

- Poor test of feature interactions

Different types of variability debt applicable to OO codebases

in the implementation

25

Determining relevant quality metrics

Daniele Wolfart, Wesley Klewerton Guez Assunção, and Jabier Martinez. 2021. Variability Debt: Characterization, Causes and Consequences. In XX Brazilian Symposium on
Software Quality. 1–10.

- System-level structure quality issues

- Code Duplication

- Lack of tests

Cognitive complexity

Duplicated code blocks

Unit tests coverage

Different types of variability debt applicable to OO codebases

in the implementation

Chosen OO metrics

26

27

Highly-Variable ✔
Critical ✘

Highly-Variable ✔ Critical ✔

Highly-Variable ✘ Critical ✔

Highly-Variable ✔ Critical ✔

No variability / quality correlation

→ visualizing both variability and quality
allows to determine quality-critical

variability implementations

Project: GeoTools
Red-to-green color scale: cognitive complexity

Quantifying the noticeable classes on VariMetrics

Protocol:

28

Quantifying the noticeable classes on VariMetrics

Protocol:

VariCity view

Visual identification of
noticeable classes

w.r.t. variability

29

Quantifying the noticeable classes on VariMetrics

Protocol:

VariCity view

VariMetrics view

Visual identification of
noticeable classes

w.r.t. variability

Visual identification of
noticeable classes

w.r.t. criticality

30

Quantifying the noticeable classes on VariMetrics

Protocol:

VariCity view

VariMetrics view

Visual identification of
noticeable classes

w.r.t. variability

Visual identification of
noticeable classes

w.r.t. criticality

31

Quantifying the noticeable classes on VariMetrics

Protocol:

VariCity view

VariMetrics view

Visual identification of
noticeable classes

w.r.t. variability

Visual identification of
noticeable classes

w.r.t. criticality

Visible classes
w.r.t. variability

and criticality

32

Quantitative evaluation

Less relevant classes with VariMetrics than with
VariCity

Results depend mainly on:

- codebase size
↑ codebase size ⇒ ↑identified variability
intense zones

- global quality
↓ quality ⇒ ↑noticeable classes

→ explains mildly encouraging results on JKube

System
Visible classes w.r.t. % reduction

VariCity →
VariMetricsvariability criticality both

Azureus 74 32 12 84 %
GeoTools 104 27 18 83 %
JDK 84 17 13 85 %
JFreeChart 35 31 10 71 %
JKube 28 115 14 50 %
OpenAPI
Generator

77 51 21 72 %
Spring
framework

57 13 6 91 %
33

Qualitative evaluation on JFreeChart

Are the shown indebted zones of variability implementations relevant?

34

Qualitative evaluation on JFreeChart

Are the shown indebted zones of variability implementations relevant?

Relevant classes w.r.t.
variability and criticality

10

35

Qualitative evaluation on JFreeChart

Are the shown indebted zones of variability implementations relevant?

Relevant classes w.r.t.
variability and criticality

10 Classes maximizing
duplicated blocks

4

Classes minimizing
test coverage

2

36

Qualitative evaluation on JFreeChart

Are the shown indebted zones of variability implementations relevant?

Relevant classes w.r.t.
variability and criticality

10 Classes maximizing
duplicated blocks

4

Classes minimizing
test coverage

2

Refactor
factorization of

duplicated blocks

Refactor
adding unit tests

37

Qualitative evaluation on JFreeChart

Are the shown indebted zones of variability implementations relevant?

Relevant classes w.r.t.
variability and criticality

10 Classes maximizing
duplicated blocks

4

Classes minimizing
test coverage

2

Refactor
factorization of

duplicated blocks

Refactor
adding unit tests

Quality metrics comparison 38

Findings

Duplications can be pure technical debt in classes
concentrating variability implementations, but can
also be improperly managed variability implementations

org.jfree.chart.axis.DateAxis
as visualized on VariMetrics

Co
mm

on
 pa

rt
Co

mm
on

 pa
rt

Va
ria

ble
 pa

rt

refreshTicksHorizontal refreshTicksVertical 39

Impact of fixing on the visualization
Before After

Classes with
duplicated blocks

Classes lacking tests

Project: JFreeChart
Red-to-green color scale: test coverage

Cracks: # duplicated blocks

40

Impact of fixing on the
classes metrics

Improvements of the quality metrics

- increased coverage
- decreased duplicated blocks

41

Class
(in the org.jfree.chart.axis package)

duplicated
blocks Complexity

DateAxis
before 10 201

AFTER 0 139

PeriodAxis
before 2 112

AFTER 1 104

DatePeriodCommon AFTER 0 8

Class
(in the org.jfree.chart package) Coverage Complexity

entity. ChartEntity
before 30.7 % 26

AFTER 90.5 % 26

ChartPanel
before 25.7 % 322

AFTER 52.2 % 295

Impact of fixing on the
classes metrics

Improvements of the quality metrics

- increased coverage
- decreased duplicated blocks

Modifications also led to a cognitive complexity
improvement

42

Class
(in the org.jfree.chart.axis package)

duplicated
blocks Complexity

DateAxis
before 10 201

AFTER 0 139

PeriodAxis
before 2 112

AFTER 1 104

DatePeriodCommon AFTER 0 8

Class
(in the org.jfree.chart package) Coverage Complexity

entity. ChartEntity
before 30.7 % 26

AFTER 90.5 % 26

ChartPanel
before 25.7 % 322

AFTER 52.2 % 295

Impact of fixing on the
classes metrics

Improvements of the quality metrics

- increased coverage
- decreased duplicated blocks

Modifications also led to a cognitive complexity
improvement

Added classes are not critical

43

Class
(in the org.jfree.chart package) Coverage Complexity

entity. ChartEntity
before 30.7 % 26

AFTER 90.5 % 26

ChartPanel
before 25.7 % 322

AFTER 52.2 % 295

Class
(in the org.jfree.chart.axis package)

duplicated
blocks Complexity

DateAxis
before 10 201

AFTER 0 139

PeriodAxis
before 2 112

AFTER 1 104

DatePeriodCommon AFTER 0 8

44

Future work

- Conducting an empirical evaluation with real
users would help us in validating our
evaluation and identifying understandability
limitations of our visualization

- Explore deeper the relation between code
smells and variability implementations
(e.g. code duplication)

⇒ better understand how VariMetrics could be extended to match the industry’s needs and expectations

45

Customizable Visualization of Quality Metrics for Object-Oriented Variability Implementations

Johann Mortara — Philippe Collet — Anne-Marie Dery-Pinna

Reproduction package:

https://doi.org/10.5281/zenodo.6644633

OO variability implementations
induce technical debt that needs to

be identified as it hampers the
system’s quality

VariMetrics displays OO quality
metrics on VariCity, a city

visualization for OO variability
implementations

The visualization exhibits
indebted zones of variability

implementations

Get the paper:

https://hal.archives-ouvertes.fr/hal-03717858/

See you at the tool demo at 5:20 PM!

VariMetrics website:

https://deathstar3.github.io/varimetrics-demo/

Obtained reproducibility badges

Artifacts Available

Functional & Reusable

