
How I Met Your Implemented Variability:
Identification in Object-Oriented Systems with
symfinder

Tutorial at SPLC ‘21
September 6, 2021

Johann Mortara − Philippe Collet

Université Côte d’Azur, CNRS, I3S, France

1

2

Thanks to SPLC’21 sponsors!

Variability-rich system
in a single code base

3

What this is all about

4

What this is all about

How to identify these variability implementations?

Variability-rich system
in a single code base

Variability-rich system
in a single code base

Identification of
symmetries Visualization of vp-s

and variants

5

What this is all about

6

Table of contents

1) Motivation and introduction to symfinder
(12.00 – 12.40)

2) symfinder: first contact
(12.40 – 13.30)

3) Break
(13.30 – 14.00)

4) Guided use of symfinder
(14.00 – 15.00)

5) Wrapping up and exchange time
(15.00 – 15.30)

Motivation and
introduction to
symfinder

7

Introduction

8

Many known software systems are highly-variable

24.000 different platforms in
2015 [Open2015]

Object-orientation

16.000 options managed
in 25M LoC [Acher2018]

#ifdef

2.000+ options generating variants for
platforms, security levels… [Acher2018]

Object-orientation

Software Product Lines: the classic (but heavy) variability management chain

Product
derivation

Source: http://stg-tud.github.io/sedc/Lecture/ws16-17/6-SPL.pdf 9

feature model

The reality of variability management

Product
derivation

Source: http://stg-tud.github.io/sedc/Lecture/ws16-17/6-SPL.pdf 10

feature model

Problem: How to identify variability implementations in an existing OO codebase?

Source: http://stg-tud.github.io/sedc/Lecture/ws16-17/6-SPL.pdf

?

11

feature model

Product
derivation

12

Context: projects clones
Clone 1 Clone 2 Clone 3

Detection method:

Comparison between clones and mapping with
the domain features [Assunção2017]

Feature location and feature identification: challenges and impact

13

Context: projects clones Context: unique codebase and
preprocessing directives

#ifdef → variant

Clone 1 Clone 2 Clone 3

Detection method:

Comparison between clones and mapping with
the domain features [Assunção2017]

Detection method:

Determining the consistency of directives
[Liebig2010]

#ifdef

Feature location and feature identification: challenges and impact

14

Our context: large and unique object-oriented codebase

- Several implementation mechanisms
- Variability buried in the code (variation points)

Detection method:

- Techniques coupling static and dynamic analysis
[Michelon2021]

- No technique using only static analysis
[Metzger2014, Tërnava2017]

Design
patterns

Inheritance

Methods
overloading

Constructors
overloading

Feature location and feature identification: challenges and impact

15

Features, variation points and variants

16

vp_shape

v_circle

v_rectangle

Features, variation points and variants Inheritance

17

vp_shape

v_circle

v_rectangle

vp_draw

Features, variation points and variants Inheritance

Overloading

Symmetries in nature, human-made artifacts, and OO constructs

Symmetry represents immunity to a possible change

and is present in object-oriented constructs

including the ones implementing variability!

18

unchanged

changes

unchanged

changes

structure

arity

vp_shape

v_circle

v_rectangle

Some references on symmetry in OO constructs: [Coplien2000, Zhao2003]

19

Types of symmetries in OO constructs

Class as
type

(Not identified
by symfinder)

Class
subtyping

Method /
constructor
overriding

Method /
constructor
overloading

Strategy Factory Decorator Template

Commonality
(unchange)
⇒ vp

Type Superclass /
Interface Signature Name Superclass

Abstract
creator and

product

Components
and decorator

interfaces

Method
defining the

template

Variability
(change)
⇒ variant

Objects
Subclasses /
implementing

classes

Implementa-
tions in

subclasses
Signature Algorithms

Concrete
creators and

products

Concrete
components

and
decorators

Steps used in
the template

20

Centre: a field of organized force in an object or part of an object which makes that
object or part exhibit centrality.

A centre is commonly formed by one or multiple local symmetry(ies).

⇒ The centre is the common part of the symmetric variants.

Random
→ hard to describe

Ordered around a
centre of symmetry
→ easy to describe

The theory of centres [Alexander2002]

21

Local symmetries form a structure,
whose coherence is determined with
its number of symmetries
[Alexander1968]

⇒ remarkable structures aggregate a
density of local symmetries

Centres and density

Variability implementation technique ⟷

- variation point (commonality) ⟷
- variant (variability) ⟷

Identification through local symmetries in core assets

High density of symmetries → variability intense places

22

unchanged

changes

local symmetry

Xhevahire Tërnava, Johann Mortara, and Philippe Collet. 2019. Identifying and Visualizing Variability in Object-Oriented Variability-Rich Systems. In 23rd International
Systems and Software Product Line Conference - Volume A (SPLC ’19), September 9–13, 2019, Paris, France. ACM, New York, NY, USA, 12 pages.

Identifying variability implementations

23

symfinder

Johann Mortara, Philippe Collet, and Xhevahire Tërnava. “Identifying and Mapping Implemented Variabilities in Java and C++ Systems using symfinder”. In: 24th ACM
International Systems and Software Product Line Conference (SPLC ’20). Ed. by ACM et al. Virtual Conference. MONTREAL, QC, Canada, Oct. 2020.

Johann Mortara, Xhevahire Tërnava, and Philippe Collet. “symfinder: A Toolchain for the Identification and Visualization of Object-Oriented Variability Implementations”. In:
the 23rd International Systems and Software Product Line Conference. Vol. B. Paris, France: ACM Press, Sept. 2019, pp. 5–8.

24

Visualization principles

25

Example of identified variability implementations

symfinder: first contact

26

Prerequisites

- Git to clone symfinder’s repository, or ZIP download is also possible

- A functional Docker and Docker Compose install
- Instructions → https://docs.docker.com/engine/install/

- A web browser to display the visualizations

This list is also present in the REQUIREMENTS.md file at the repository’s root.

27

https://docs.docker.com/engine/install/

symfinder overview

28

Sources fetching

deathstar3/
symfinder-fetcher

symfinder engine

deathstar3/
symfinder-engine

Neo4j database

deathstar3/
symfinder-neo4j

parsing

storing and querying nodes
and relationships

D3.js visualization

python
analysis output

symfinder runner
deathstar3/symfinder-runner

Used Docker images

Declaring studied projects: the experiments.yaml file

29

analysis name

project url

directory to analyse
tag / commit to checkout

packages / classes not to analyse

symfinder settings: the symfinder.yaml file

30

address of the Neo4j server

credentials

file containing the descriptions of
the analysed projects

Do not touch this file
for this tutorial!

Running symfinder

Only one script to execute: run.sh

Parameters: projects to analyse

31

Docker images tag

Step 1: Fetching the sources

- the runner creates the containers

- symfinder waits for Neo4j to be started

- the analysis starts
- visitors parse the code and store information in the Neo4j database

- may take some time depending on the project’s size!

32

Step 2: symfinder analysis

33

the runner creates the containers

symfinder waits for
Neo4j to be started

the analysis starts

- after the visitors parsings are finished, the potential vp-s and variants are identified

- statistics on the analysis are displayed and symfinder stops

- the runner stops the containers

34

End of analysis

35

End of analysis

vp-s and variants
identified, statistics on the
analysis are displayed and
symfinder stops

the runner stops the containers

36

Step 3: accessing the
visualization

Focus on
this part

37

Clone symfinder’s repository and
checkout the “tutorial” tag

Run symfinder on JFreeChart
Display the visualization

First contact: running an existing experiment

Repository’s URL: https://github.com/DeathStar3/symfinder-SPLC2021-tutorial/

Requirements in the REQUIREMENTS.md file

https://github.com/DeathStar3/symfinder-SPLC2021-tutorial/

Guided use of symfinder

38

39

1. Edit the experiments/experiments.yaml to add your
project.

2. Relaunch symfinder on your project

Adapting symfinder for your project

40

The hall of fame of the tutorial will contain the visualizations you obtained on your projects!

If you wish to send us your visualizations:

- zip the generated_visualizations directory;

- send it to us by mail:

- johann [dot] mortara [at] univ-cotedazur [dot] fr

- philippe [dot] collet [at] univ-cotedazur [dot] fr

Hall of fame

Wrapping up &
Exchange time

41

What you saw in this tutorial:

- Background on variability implementation in OO systems, and challenges around their
identification

- Introduction on the notion of symmetry in OO constructs
- The symfinder toolchain

- how the toolchain uses density of symmetries to identify vp-s and variants in a single Java codebase
- practical application on your systems

42

Wrap up

43Source: http://stg-tud.github.io/sedc/Lecture/ws16-17/6-SPL.pdf

feature model

✓

Potential variability implementations identified!

44Source: http://stg-tud.github.io/sedc/Lecture/ws16-17/6-SPL.pdf

feature model

? ✓

Potential variability implementations identified!
but are they relevant w.r.t. existing features?

Question: Are the identified vp-s from ArgoUML relevant for a feature mapping?

Source: http://stg-tud.github.io/sedc/Lecture/ws16-17/6-SPL.pdf

feature model

45

?

traces

Ground Truth
vp-s automatically

identified by symfinder

Application to a case study: ArgoUML

46
Johann Mortara, Xhevahire Tërnava, and Philippe Collet. “Mapping Features to Automatically Identified Object-Oriented Variability Implementations - The case of
ArgoUML-SPL”. In: 14th International Working Conference on Variability Modelling of Software-Intensive Systems (VaMoS ’20). Magdeburg, Germany, Feb. 2020.

Precision
Percentage of identified vp-s and variants
that could be mapped to domain features

38%
- coarse grain features based on superficial

domain knowledge

- not all identified places with a symmetry are
related to variability

Recall
Percentage of features’ traces

that could be mapped to identified vp-s and variants

83%
The missing 17% of traces are not variability

related (initialization classes, external libraries)

Mapping vp-s and variants to features

47
Johann Mortara, Xhevahire Tërnava, and Philippe Collet. “Mapping Features to Automatically Identified Object-Oriented Variability Implementations - The case of
ArgoUML-SPL”. In: 14th International Working Conference on Variability Modelling of Software-Intensive Systems (VaMoS ’20). Magdeburg, Germany, Feb. 2020.

Precision
Percentage of identified vp-s and variants
that could be mapped to domain features

38%
- coarse grain features based on superficial

domain knowledge

- not all identified places with a symmetry are
related to variability

Recall
Percentage of features’ traces

that could be mapped to identified vp-s and variants

83%
The missing 17% of traces are not variability

related (initialization classes, external libraries)

Mapping vp-s and variants to features

⇒ need for a more precise detection method

48

Extending the identification method

Not used in
symfinder!

49

symfinder-2

Variability-rich system
in a single code base

Identification of symmetries and
dense zones of variability using

usage relationships

Visualization of vp-s and
variants with their usage

relationships
Johann Mortara, Xhevahire Tërnava, Philippe Collet, Anne-Marie Dery-Pinna. Extending the Identification of Object-Oriented Variability Implementations using Usage
Relationships. SPLC 2021 - 25th ACM International Systems and Software Product Line Conference, Sep 2021, Leicester, United Kingdom. pp.1-8

v_MeterNeedle
(used by CompassPlot)

vp_CompassPlot (entrypoint)

vp_XYPlot (variant of Plot)

vp_Plot (entrypoint)

vp_CategoryPlot
(variant of Plot)

View shaped with
entrypoint classes

50

v_MeterNeedle
(used by CompassPlot)

vp_CompassPlot (entrypoint)

vp_XYPlot (variant of Plot)

vp_Plot (entrypoint)

vp_CategoryPlot
(variant of Plot)

View shaped with
entrypoint classes

but 51

VariCity: visualizing variability implementations as a city

52
Johann Mortara, Philippe Collet, Anne-Marie Dery-Pinna. Visualization of Object-Oriented Variability Implementations as Cities. 9th IEEE Working Conference on Software
Visualization (VISSOFT 2021), Sep 2021, Luxembourg (virtual), Luxembourg.

VariCity: visualizing variability implementations as a city

53
Johann Mortara, Philippe Collet, Anne-Marie Dery-Pinna. Visualization of Object-Oriented Variability Implementations as Cities. 9th IEEE Working Conference on Software
Visualization (VISSOFT 2021), Sep 2021, Luxembourg (virtual), Luxembourg.

Density of variability implementations

Limitations / future work
Toolchain can analyze OO variability implementations projects in
Java and C++
but no support for other OO languages (Python, JavaScript…) or
implementation techniques

⇒ extend the toolchain support

54

Parameterized density gives first results
but need to understand how to determine these parameters for a project

⇒ need to analyze projects with ≠ architectures to understand better

Non exhaustive list of topics

55

1. Time of the conducted analyses on the different systems

2. Discussions on observed variability implementations and architectures

3. Discussion on the usage of the different features of the symfinder visualization

4. Feedback on the experience and possible improvements

56

Thanks to SPLC’21 sponsors!

How I Met Your Implemented Variability:
Identification in Object-Oriented Systems with symfinder

Johann Mortara − Philippe Collet

57

Thank you for
attending!Tutorial’s website:

https://deathstar3.github.io/SPLC2021-symfinder-tutorial/

Mail addresses to send your visualizations for the hall of fame:
- johann [dot] mortara [at] univ-cotedazur [dot] fr
- philippe [dot] collet [at] univ-cotedazur [dot] fr

58

[Acher2018] Mathieu Acher. Software Variability and Artificial Intelligence. Ecole d'été du GDR GPL - EJCP
2018 https://ejcp2018.sciencesconf.org/file/441457

[Alexander1968] Christopher Alexander and Susan Carey. 1968. Subsymmetries. Perception &
Psychophysics 4, 2 (1968), 73–77.

[Alexander2002] Christopher Alexander. 2002. The nature of order: an essay on the art of building and the
nature of the universe. Book 1, The phenomenon of life. Center for Environmental Structure.

[Assunção2017] Wesley KG Assunção, Roberto E Lopez-Herrejon, Lukas Linsbauer, Silvia R Vergilio and
Alexander Egyed. 2017. Reengineering legacy applications into software product lines: a systematic
mapping. Empirical Software Engineering 22, 6 (2017), 2972–3016.

[Coplien2000] James O Coplien and Liping Zhao. 2000. Symmetry breaking in software patterns. In
International Symposium on Generative and Component-Based Software Engineering. Springer, 37–54.

[Coplien2019] James O. Coplien and Liping Zhao. 2019. Toward a general formal foundation of design.
Symmetry and broken symmetry. Technical Report. A VUB Lecture Series Publication. Working draft.

[Couto2011] Marcus Vinicius Couto, Marco Tulio Valente, and Eduardo Figueiredo. Extracting Software
Product Lines: A Case Study Using Conditional Compilation. In 15th European Conference on Software
Maintenance and Reengineering (CSMR), pages 191-200, 2011.

[Liebig2010] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner and Michael Schulze. 2010. An
analysis of the variability in forty preprocessor-based software product lines. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 1. ACM, 105–114.

[Michelon2021] Gabriela K. Michelon, Lukas Linsbauer, Wesley K.G. Assunção, Stefan Fischer, and Alexander
Egyed. 2021. A Hybrid Feature Location Technique for Re-engineering Single Systems into Software Product
Lines. In 15th International Working Conference on Variability Modelling of Software-Intensive Systems
(VaMoS'21). ACM, New York, NY, USA, Article 11, 1–9.

[Metzger2014] Andreas Metzger and Klaus Pohl. 2014. Software product line engineering and variability
management: achievements and challenges. In Proceedings of the on Future of Software Engineering (FOSE
2014). ACM, New York, NY, USA, 70-84. DOI: http://dx.doi.org/10.1145/2593882.2593888

[Open2015] OpenSignal. Android Fragmentation Report. August 2015
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_fra
gmentation_report.pdf

[Tërnava2019] Xhevahire Tërnava, Johann Mortara, and Philippe Collet. 2019. Identifying and Visualizing
Variability in Object-Oriented Variability-Rich Systems. In 23rd International Systems and Software Product
Line Conference - Volume A (SPLC ’19), September 9–13, 2019, Paris, France. ACM, New York, NY, USA, 12
pages.

[Tërnava2018] Xhevahire Tërnava and Philippe Collet. Identifying Variability Implementations with Local
Symmetries. unpublished tech report. 2018.

[Tërnava2017] Xhevahire Tërnava and Philippe Collet. 2017. On the Diversity of Capturing Variability at the
Implementation Level. In Proceedings of the 21st International Systems and Software Product Line
Conference-Volume B. ACM, 81–88.

[Zhao2002] Liping Zhao and James O Coplien. 2002. Symmetry in class and type hierarchy. In Proceedings
of the Fortieth International Conference on Tools Pacific: Objects for internet, mobile and embedded
applications. Australian Computer Society, Inc., 181–189.

[Zhao2003] Liping Zhao and James Coplien. 2003. Understanding symmetry in object-oriented languages.
Journal of Object Technology 2, 5 (2003), 123–134.

References

https://ejcp2018.sciencesconf.org/file/441457
http://dx.doi.org/10.1145/2593882.2593888
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf

