
Capturing the diversity of analyses on the
Linux kernel variability

SPLC ‘21
September 10, 2021

Johann Mortara − Philippe Collet

Université Côte d’Azur, CNRS, I3S, France

1

Highly configurable operating system

Some statistics:

- 15K+ features
- 28M+ LoC in 60K+ files
- 900K+ commits by 2K+ contributors

2

The Linux kernel

Used as a case study by plethora of
research work in different domains:

- security
- code quality
- development process
- …
- and also in the SPL field!

3

3 steps:

1. Kconfig:
selection of
features

2. Kbuild: selection
of source files

3. CPP: selection of
code blocks

The Linux build system

An anomaly defines a property
describing a defect in the build
system.

Each defect is formalized as a
satisfiability check on a boolean
formula to check for the presence
of the anomaly.

4

Linux build system anomalies

Configuration internal
anomalies

Kbuild internal anomalies

Implementation internal anomalies

Configuration-implementation anomalies

Co
nfi

gu
rat

ion
-K

bu
ild

-im
ple

me
nt

ati
on

an
om

ali
es

Configuration-
Kbuild

anomalies

Kbuild-
implementation

anomalies

5

Internal anomalies
External anomaliesStudied anomalies in the Linux build system

Sincero et al., 2010; Nadi and Holt, 2012; Tartler et al. 2011

Hengelein, 2015
Tartler et al., 2011

Nadi and Holt, 2011

Sincero et al., 2010; Nadi and Holt, 2012; Tartler et al. 2011

Nadi and Holt,
2012

Nadi and Holt,
2012

Nadi and Holt,
2012

6

No existing formalism covers the whole set of anomalies in the build system

Sincero et al., 2010; Nadi and Holt, 2012; Tartler et al. 2011

Hengelein, 2015
Tartler et al., 2011

Nadi and Holt, 2011

Sincero et al., 2010; Nadi and Holt, 2012; Tartler et al. 2011

Nadi and Holt,
2012

Nadi and Holt,
2012

Nadi and Holt,
2012

7

Partial view of the
anomalies

No existing formalism covers the whole set of anomalies in the build system

Sincero et al., 2010; Nadi and Holt, 2012; Tartler et al. 2011

Hengelein, 2015
Tartler et al., 2011

Nadi and Holt, 2011

Sincero et al., 2010; Nadi and Holt, 2012; Tartler et al. 2011

Nadi and Holt,
2012

Nadi and Holt,
2012

Nadi and Holt,
2012

8

Different denominations
for the three spaces

Partial view of the
anomalies

No existing formalism covers the whole set of anomalies in the build system

Sincero et al., 2010; Nadi and Holt, 2012; Tartler et al. 2011

Hengelein, 2015
Tartler et al., 2011

Nadi and Holt, 2011

Sincero et al., 2010; Nadi and Holt, 2012; Tartler et al. 2011

Nadi and Holt,
2012

Nadi and Holt,
2012

Nadi and Holt,
2012

9

Different denominations
for the three spaces

Overlapping formulas with
different conventions

Partial view of the
anomalies

No existing formalism covers the whole set of anomalies in the build system

10

≠ denominations ≠ conventionsPartial view

11

≠ denominations ≠ conventionsPartial view

Single terminology
Global viewUnified model

Fine-grained vision

12

≠ denominations ≠ conventionsPartial view

Single terminology
Global viewUnified model

Fine-grained vision

Better comprehension Applicability

13

Example of internal anomaly (Code space) [Sincero et al., 2010]

B2 dead ⇔
¬sat(B2 ∧ C) C

14

Example of internal anomaly (Code space) [Sincero et al., 2010]

B2 dead ⇔
¬sat(B2 ∧ C) C

Simplified solution

with entire context,

does not scale

15

K

B2 dead ⇔
¬sat(B2 ∧ C ∧ M ∧

K)
C

Example of external anomaly (Code and Make spaces) [Nadi and Holt, 2012]

foo.o dead ⇔
¬sat(foo.o ∧ M ∧ K) M

16

K

C
M

B2 dead ⇔
¬sat(B2 ∧ C ∧ M ∧

K)

foo.o dead ⇔
¬sat(foo.o ∧ M ∧ K) Same issue

Example of external anomaly (Code and Make spaces) [Nadi and Holt, 2012]

Incoherences

Tartler et al., 2011:

“A configurability defect (short: defect) is a
configuration-conditional item that is either dead (never
included) or undead (always included) under the
precondition that its parent (enclosing item) is included.”

1 #if defined A

2 // block1

3 #if defined A

4 // block2

5 #endif

6 #endif⇒ block2 undead

Example:

17

Incoherences

Tartler et al., 2011:

“A configurability defect (short: defect) is a
configuration-conditional item that is either dead (never
included) or undead (always included) under the
precondition that its parent (enclosing item) is included.”

“Defects appear in two ways, either as dead, that is,
unselectable blocks, or undead, that is, always present
blocks.”

1 #if defined A

2 // block1

3 #if defined A

4 // block2

5 #endif

6 #endif⇒ block2 undead

⇒ block2 not undead

Example:

Identical defect name
but different semantics

18

Incoherences

Different denominations
for the three spaces

Overlapping formulas with
different conventions

19

Contribution: design choices

20

Kconfig space Make space Code space

Kconfig

Defines constraints on features for
feature selection

Kbuild

Defines constraints on features for
source file selection

CPP

Defines constraints on features for
code block selection

21

Kconfig space Make space Code space

Kconfig

Defines constraints on features for
feature selection

Kbuild

Defines constraints on features for
source file selection

CPP

Defines constraints on features for
code block selection

Presence Conditions
(PCs)

Contribution: design choices

22

Configurator

PC: checks that the feature can be
selected given the constraints of the
configuration space.

Kconfig space Make space Code space

Kconfig

Defines constraints on features for
feature selection

Kbuild

Defines constraints on features for
source file selection

CPP

Defines constraints on features for
code block selection

Contribution: design choices

23

Configurator

PC: checks that the feature can be
selected given the constraints of the
configuration space.

Derivator on assets

Internal PC: checks that the asset can be selected given the constraints of its space;

External PC: checks that the constraints of its context are also satisfiable.

Kconfig space Make space Code space

Kconfig

Defines constraints on features for
feature selection

Kbuild

Defines constraints on features for
source file selection

CPP

Defines constraints on features for
code block selection

Contribution: design choices

Model concepts

24

Kconfig
Configurator

CPP
Derivator

Make
Derivator

Model concepts

25
PC = Presence Condition

Kconfig
Configurator

CPP
Derivator

PCInt
Make

Derivator
PCIntPC

Model concepts

26

Kconfig
Configurator

CPP
Derivator

PCInt
Make

Derivator
PCIntPC

PC = Presence Condition

PCExt
context: Kconfig

Model concepts

27

Kconfig
Configurator

CPP
Derivator

PCInt
Make

Derivator
PCIntPC

PC = Presence Condition

PCExt
context: Kconfig & Make

context

Model concepts

28

Kconfig
Configurator

CPP
Derivator

PCInt
Make

Derivator
PCIntPC

PC = Presence Condition

PCExt
context: Kconfig

PCExt
context: Make

Configuration internal
anomalies

Kbuild internal anomalies

Implementation internal anomalies

Configuration-implementation anomalies

Co
nfi

gu
rat

ion
-K

bu
ild

-im
ple

me
nt

ati
on

an
om

ali
es

Configuration-
Kbuild

anomalies

Kbuild-
implementation

anomalies

29

Internal PC (PCInt) → Internal anomalies External PC (PCExt) → External anomalies

Contribution:

3
0

Formal definitions of the model concepts
and properties, and instantiation of the 25

anomalies in most relevant papers from
the SOTA are present in the companion

technical report.
https://doi.org/10.5281/zenodo.4715969

31

We want to check if CPP
block B3 is selectable.

1. According to
constraints in
its own space, by
determining
PCInt(B3).

How to build presence conditions?

PCInt(B3)

32

We want to check if CPP
block B3 is selectable.

2. According to
constraints in
its own space and
in the Make
space, by
determining
PCExt(B3) with
the Make space
as context.

How to build presence conditions?

PCInt(B3)

context
PCExt(B3)

33

We want to check if CPP
block B3 is selectable.

3. According to
constraints in
the three spaces,
by determining
PCExt(B3) with
the Kconfig and
Make spaces as
context.

How to build presence conditions?

PCInt(B3)
PCExt(B3)

context

34

 1 #if defined CONFIG_FOO
 2 // B1
 3 #if !defined CONFIG_FOO
 4 // B2
 5 #elif defined F_SEL
 6 // B3
 7 #else
 8 // B4
 9 #endif
10 #endif

lib/dir/foo.c
B3 is selectable if:

Step 1: building the internal presence condition Code space

35

 1 #if defined CONFIG_FOO
 2 // B1
 3 #if !defined CONFIG_FOO
 4 // B2
 5 #elif defined F_SEL
 6 // B3
 7 #else
 8 // B4
 9 #endif
10 #endif

lib/dir/foo.c

①

B3 is selectable if:

1. its condition is satisfiable F_SEL

Code spaceStep 1: building the internal presence condition

36

 1 #if defined CONFIG_FOO
 2 // B1
 3 #if !defined CONFIG_FOO
 4 // B2
 5 #elif defined F_SEL
 6 // B3
 7 #else
 8 // B4
 9 #endif
10 #endif

lib/dir/foo.c

①

②
B3 is selectable if:

1. its condition is satisfiable
2. its parent block (B1) is selectable

a. its condition is satisfiable, etc.
PCInt(B1)

F_SEL

Code spaceStep 1: building the internal presence condition

B3 is selectable if:

1. its condition is satisfiable
2. its parent block (B1) is selectable

a. its condition is satisfiable, etc.
3. its predecessor B2 is not selectable

37

 1 #if defined CONFIG_FOO
 2 // B1
 3 #if !defined CONFIG_FOO
 4 // B2
 5 #elif defined F_SEL
 6 // B3
 7 #else
 8 // B4
 9 #endif
10 #endif

lib/dir/foo.c

①

②

③
PCInt(B1)

F_SEL

¬PCInt(B2)

Code spaceStep 1: building the internal presence condition

B3 is selectable if:

1. its condition is satisfiable
2. its parent block (B1) is selectable

a. its condition is satisfiable, etc.
3. its predecessor B2 is not selectable

38

 1 #if defined CONFIG_FOO
 2 // B1
 3 #if !defined CONFIG_FOO
 4 // B2
 5 #elif defined F_SEL
 6 // B3
 7 #else
 8 // B4
 9 #endif
10 #endif

lib/dir/foo.c

①

②

③
PCInt(B1)

¬PCInt(B2)

F_SEL

PCInt(B3) = F_SEL∧PCInt(B1)∧¬PCInt(B2)

Code spaceStep 1: building the internal presence condition

39

We want to check if CPP
block B3 is selectable.

1. According to
constraints in
its own space, by
determining
PCInt(B3).

PCInt(B3) = F_SEL∧PCInt(B1)

∧¬PCInt(B2)

Step 1: building the internal presence condition ✅

40

1 obj-$(CONFIG_FOO) += foo.o
2 foo-y := file_a.o file_b.o
3 obj-y += file_c.o

lib/dir/Makefile

1 obj-$(CONFIG_BAR) += dir/

lib/Makefile To be selectable, B3’s containing file (foo.c)
needs to be selectable too!

Step 2: adding constraints from the Make space

41

1 obj-$(CONFIG_FOO) += foo.o
2 foo-y := file_a.o file_b.o
3 obj-y += file_c.o

lib/dir/Makefile

1 obj-$(CONFIG_BAR) += dir/

lib/Makefile To be selectable, B3’s containing file (foo.c)
needs to be selectable too!

1. foo.c’s condition is satisfiable

①

FOO

Step 2: adding constraints from the Make space

42

1 obj-$(CONFIG_FOO) += foo.o
2 foo-y := file_a.o file_b.o
3 obj-y += file_c.o

lib/dir/Makefile

1 obj-$(CONFIG_BAR) += dir/

lib/Makefile To be selectable, B3’s containing file (foo.c)
needs to be selectable too!

1. foo.c’s condition is satisfiable
2. foo.c’s parent directory is selectable

①

②
FOO

PCInt(dir)

Step 2: adding constraints from the Make space

43

1 obj-$(CONFIG_FOO) += foo.o
2 foo-y := file_a.o file_b.o
3 obj-y += file_c.o

lib/dir/Makefile

1 obj-$(CONFIG_BAR) += dir/

lib/Makefile To be selectable, B3’s containing file (foo.c)
needs to be selectable too!

1. foo.c’s condition is satisfiable
2. foo.c’s parent directory is selectable

①

②
FOO

PCInt(dir)

PCInt(foo.c) = FOO∧PCInt(dir) PCExt(B3) = PCInt(B3)
∧PCInt(foo.c)

context

Step 2: adding constraints from the Make space

44

We want to check if CPP
block B3 is selectable.

2. According to
constraints in
its own space and
in the Make
space, by
determining
PCExt(B3) with
the Make space
as context.

PCExt(B3) = PCInt(B3)∧PCInt(foo.c)

context
PCExt(B3)

PCInt(B3) = F_SEL∧PCInt(B1)

∧¬PCInt(B2)

PCInt(foo.c)

45

PCs for B3 and foo.c rely on features from
the Kconfig space, so constraints between
the features must also be satisfiable!

 1 menu “Menu prompt”
 2 depends on MENU_COND
 3
 4 config FOO
 5 bool "FOO prompt text"
 6 default y
 7 select F_SEL
 8 depends on !BAR
 9
10 config BAR
11 tristate "BAR prompt text"
12 default n
14
15 endmenu
16
17 config F_SEL
18 bool
19 default n

lib/Kconfig

Step 3: adding constraints from the Kconfig space

46

PCs for B3 and foo.c rely on features from
the Kconfig space, so constraints between
the features must also be satisfiable!

1. PC(FOO) = ¬BAR∧MENU_COND
2. PC(BAR) = MENU_COND
3. PC(F_SEL) = true

 1 menu “Menu prompt”
 2 depends on MENU_COND
 3
 4 config FOO
 5 bool "FOO prompt text"
 6 default y
 7 select F_SEL
 8 depends on !BAR
 9
10 config BAR
11 tristate "BAR prompt text"
12 default n
14
15 endmenu
16
17 config F_SEL
18 bool
19 default n

lib/Kconfig

①

②

③

Step 2: adding constraints from the Kconfig space

47

PCs for B3 and foo.c rely on features from
the Kconfig space, so constraints between
the features must also be satisfiable!

1. PC(FOO) = ¬BAR∧MENU_COND
2. PC(BAR) = MENU_COND
3. PC(F_SEL) = true

PCExt(B3) = PCInt(B3)∧PCInt(foo.c)∧PC(FOO)∧PC(BAR)∧PC(F_SEL)

 1 menu “Menu prompt”
 2 depends on MENU_COND
 3
 4 config FOO
 5 bool "FOO prompt text"
 6 default y
 7 select F_SEL
 8 depends on !BAR
 9
10 config BAR
11 tristate "BAR prompt text"
12 default n
14
15 endmenu
16
17 config F_SEL
18 bool
19 default n

lib/Kconfig

①

②

③ context

Step 2: adding constraints from the Kconfig space

48

We want to check if CPP
block B3 is selectable.

3. According to
constraints in
the three spaces,
by determining
PCExt(B3) with
the Kconfig and
Make spaces as
context.

PCExt(B3) = PCInt(B3)∧PCInt(foo.c)∧PC(FOO)∧PC(BAR)∧PC(F_SEL)

context
PCInt(B3) = F_SEL∧PCInt(B1)

∧¬PCInt(B2)

PCInt(foo.c)

PC(FOO)∧PC(BAR)∧PC(F_SEL)

PCExt(B3)

Internal dead block

Anomaly SOTA Our model

¬sat(B3∧C)
¬sat(PCInt(B3)) = ¬sat(F_SEL∧PCInt(B1)

∧¬PCInt(B2))

External dead block,
Make as context ¬sat(B3∧C∧M)

¬sat(PCExt(B3)) =

¬sat(PCInt(B3)∧PCInt(foo.c))

External dead block,
Make and Kconfig as context ¬sat(B3∧C∧M∧K)

¬sat(PCExt(B3)) = ¬sat(PCInt(B3)

∧PCInt(foo.c)∧

PC(FOO)∧PC(BAR)∧PC(F_SEL))

Results coverage

50

All anomalies could be expressed
in our unified model

Results coverage

51

All anomalies could be expressed
in our unified model

Anomalies with identical names
check different defects

Results coverage

All anomalies could be expressed
in our unified model

Anomalies with identical names
check different defects

Anomalies with different names
check identical defects

52

53

Future work

Provide a model-driven framework for the
proposed model

Apply the model to the build systems of other
systems:

- BusyBox
- JHipster
- Mozilla Firefox

54

Capturing the diversity of analyses on the Linux kernel variability
Johann Mortara – Philippe Collet

Map of the existing work
on anomalies in the Linux

build system

Unified model to represent
anomalies in the Linux kernel

build system

Covering SOTA properties and
exhibiting incoherences

between them

Get the technical report:Get the paper:

https://doi.org/10.5281/zenodo.4715969https://doi.org/10.1145/3461001.3471151

