
ROSE Festival @ ICSME 2021
September 2021, 29

“You’re an artifact, VariCity.”
Johann Mortara — Philippe Collet — Anne-Marie Dery-Pinna

1



VariCity

3D visualization of variability implementations 
(OO metrics)

2



VariCity

3D visualization of variability implementations 
(OO metrics)

Technological stack:

- Language: TypeScript built with Node.js
⇒ eased dependencies management / 
build

- 3D framework: Babylon.js

- Deployment: Webpack
⇒ visualization accessible through a web 
browser 3



VariCity

3D visualization of variability implementations 
(OO metrics)

Technological stack:

- Language: TypeScript built with Node.js
⇒ eased dependencies management / 
build

- 3D framework: Babylon.js

- Deployment: Webpack
⇒ visualization accessible through a web 
browser 4

Choice of technological stack 
driven by the ease of use and reuse



VariCity and 
symfinder overview

5

Sources fetching

Python scripts
(and used libraries)

symfinder engine

Java
Maven

(and used libraries)

Neo4j database

parsing

storing and querying nodes 
and relationships

VariCity

Node.js
(and used libraries)

analysis output

Dependencies:
- Python, Java, Maven, Node.js, Neo4j for all components
- Python, Bash / Batch for the execution

Execution on every project 
managed in Python
(and used libraries)



Dockerizing the 
components

6

Sources fetching

deathstar3/
symfinder-fetcher

symfinder engine

deathstar3/
symfinder-engine

Neo4j database

deathstar3/
symfinder-neo4j

parsing

storing and querying nodes 
and relationships

VariCity

deathstar3/varicity
analysis output

Used Docker images

Execution on every project 
managed in Python
(and used libraries)

Dependencies:
- Python, Java, Maven, Node.js, Neo4j Docker for all components
- Python, Bash / Batch for the execution



Dockerizing the 
components and the 
execution process

7

Sources fetching

deathstar3/
symfinder-fetcher

symfinder engine

deathstar3/
symfinder-engine

Neo4j database

deathstar3/
symfinder-neo4j

parsing

storing and querying nodes 
and relationships

VariCity

deathstar3/varicity
analysis output

symfinder runner
deathstar3/symfinder-runner

Used Docker images

Dependencies:
- Python, Java, Maven, Node.js, Neo4j Docker for all components
- Python, Bash / Batch, Docker for the execution



Functional & Reproducible

The tool must be easy to setup and run

8

Functionality goal: the reviewer can run the visualization

Trials on clean machines having ≠ OSes
⇒ made us realize that Docker on Windows and MacOS 
needed additional settings, that we added to the 
documentation of the toolVisualization data generated by symfinder already given

⇒ the reviewer is not obliged to run symfinder on all 
projects as it may take time 

Already built docker images available on Docker Hub
⇒ no build required



Functional & Reproducible

The usage instructions must be clear

9

Reproducibility goal: the reviewer can reproduce the city exploration scenarios presented in the paper

Trials by people not knowing the project
⇒ are the instructions clear enough for someone 
external to run the tool?

Scenarios are detailed step by step, from the setup to the 
expected output
⇒ only the needed technical details are given to 
keep it simple



Functional & Reproducible → Reusable

10

Reusability goals: practitioners can easily apply symfinder / VariCity on their own projects

Detailed guide for reuse given
⇒ how to setup a new project to analyse…

Configuration external to the code
⇒ no modification inside the code needed

Detailed technical documentation
⇒ the tool can be modified for other needs

The tool must be easy to reuse



11

“You’re an artifact, VariCity.”
Johann Mortara  —  Philippe Collet  —  Anne-Marie Dery-Pinna

Reproduction package:

https://doi.org/10.5281/zenodo.5034199

Get the paper on VariCity:

https://hal.archives-ouvertes.fr/hal-03312487

VariCity website:

https://deathstar3.github.io/varicity-demo/

Obtained reproducibility badges

Open Research Objects

Research Objects Reviewed

symfinder obtained an ACM 
Reusable badge at SPLC’19


