
Visualization of Object-Oriented Variability
Implementations as Cities

GT GLIHM — Virtual
November 25, 2021

Johann Mortara − Philippe Collet – Anne-Marie Dery-Pinna

Université Côte d’Azur, CNRS, I3S, France

1

and multiple management techniques…

24.000 different platforms in
2015

Object-orientation

16.000 options managed
in 25M LoC

#ifdef

2.000+ options generating variants for
platforms, security levels…

#ifdef / object-orientation

Highly-variable Systems with a Single Code Base

2

?

3

feature model

OO codebases use OO mechanisms to implement variability
in a single codebase

- inheritance
- overloading of methods and constructors
- design patterns

Undocumented
OO variability

implementations

Creation of complex zones in the system

?

4

feature model

OO codebases use OO mechanisms to implement variability
in a single codebase

- inheritance
- overloading of methods and constructors
- design patterns

Undocumented
OO variability

implementations

Creation of complex zones in the system

⇒ understanding them is crucial to comprehend the codebase variability

Problem: How to identify and comprehend object-oriented variability implementations?

Variation points and variants

5

Variation points and variants

6

vp_Shape

v_Circle

v_Rectangle

Variation points and variants

7

vp_Shape

v_Circle

v_Rectangle

vp_draw

- Symmetries exist in each OO mechanism
(Coplien and Zhao’s work)

- Symmetries present in mechanisms
implementing variability

High density of symmetries
⇒ high density of variability

8

unchanged

changes

unchanged

changes

structure

arity

vp_shape

v_circle

v_rectangle

Identifying OO variability implementations with symmetries

Xhevahire Tërnava, Johann Mortara, and Philippe Collet. “Identifying and visualizing variability in object-oriented variability-rich systems”. In: the 23rd International
Systems and Software Product Line Conference. Paris, France: ACM Press, Sept. 2019, pp. 231–243.

9

vp_Shape

v_Circle v_Rectangle

vp_ShapeRenderer

v_CircleRenderer v_RectangleRenderer

vp_draw

Density of symmetries

10

vp_Shape

v_Circle v_Rectangle

vp_ShapeRenderer

v_CircleRenderer v_RectangleRenderer

vp_draw

Density of symmetries
vp (class or method level) with important number of variants

11

vp_Shape

v_Circle v_Rectangle

vp_ShapeRenderer

v_CircleRenderer v_RectangleRenderer

vp_draw

Density of symmetries
vp (class or method level) with important number of variants

vp-s using each other

12

vp_Shape

v_Circle v_Rectangle

vp_ShapeRenderer

v_CircleRenderer v_RectangleRenderer

vp_draw

Density of symmetries
vp (class or method level) with important number of variants

vp-s using each other
HOTSPOTS

Automatic identification of variability implementations in an OO codebase

13
Johann Mortara, Xhevahire Tërnava, Philippe Collet, Anne-Marie Dery-Pinna. Extending the Identification of Object-Oriented Variability Implementations using Usage
Relationships. SPLC 2021 - 25th ACM International Systems and Software Product Line Conference, Sep 2021, Leicester, United Kingdom. pp.1-8

metrics / properties

Finding an appropriate visualization

Goal: help the comprehension of variability intense zones in a large codebase

14

Finding an appropriate visualization

Goal: help the comprehension of variability intense zones in a large codebase

15

Requirement 1
the visualization must display metrics on classes and
relationships between them, exhibiting the density

of variability implementations

Finding an appropriate visualization

Goal: help the comprehension of variability intense zones in a large codebase

16

Requirement 1
the visualization must display metrics on classes and
relationships between them, exhibiting the density

of variability implementations

Requirement 2
the visualization must scale on large systems

Finding an appropriate visualization

Goal: help the comprehension of variability intense zones in a large codebase

17

Requirement 1
the visualization must display metrics on classes and
relationships between them, exhibiting the density

of variability implementations

Requirement 2
the visualization must scale on large systems

The city metaphor

Finding an appropriate visualization

Goal: help the comprehension of variability intense zones in a large codebase

18

Requirement 1
the visualization must display metrics on classes and
relationships between them, exhibiting the density of

variability implementations

Requirement 2
the visualization must scale on large systems

The city metaphor
adapted for variability implementations

19

CodeCity view of Jmol
(https://wettel.github.io/codecity-wof.html)

VariCity view of JFreeChart

attributes

methods

Grouping by
package

From CodeCity and Evo-Streets to VariCity

Street = package

Evo-Streets view of
CrocoCosmos
Steinbrückner and Lewerentz, 2010

Building = class
Width = class metric

https://wettel.github.io/codecity-wof.html

20

CodeCity view of Jmol
(https://wettel.github.io/codecity-wof.html)

attributes

methods

Grouping by
package

From CodeCity and Evo-Streets to VariCity

Street = package

Building = class
Width = class metric

Additional links for inheritance

Evo-Streets view of
CrocoCosmos
Steinbrückner and Lewerentz, 2010

https://wettel.github.io/codecity-wof.html

Interaction capabilities

Zooming, spanning

Hovering buildings to
display additional links

Increasing / decreasing
the usage level

Orientation of the usage
relationships

Adapting the entrypoints
21

https://docs.google.com/file/d/159TSdKE9Fd4gu4jbiDUK5zB_9VXSaaGG/preview

Exhibiting density of variability implementations

22

Large neighbourhoods =
density by usage relationships

Tall and / or large buildings =
density at method level

Visualization of JFreeChart

Hotspots maximize both
density types

Evaluation

Variability implementations are complex zones in the code that newcomers onboarding on a project seek to
understand [1]

Two types of users are part of onboarding scenarios:

- a newcomer is onboarded on a project and has to grasp its important parts

- an expert has a deep knowledge of the codebase, and helps the newcomer to discover it

23
[1] R. Yates, N. Power, and J. Buckley, “Characterizing the transfer of program comprehension in onboarding: an information-push perspective,”
Empirical Software Engineering, vol. 25, no. 1, pp. 940–995, 2020.

24

Preconfigured view of NetBeans, neighbourhood of tall and blue
buildings detaches

Zooming and spanning allow to explore at finer-grain the city

Scenario 1: An expert wants to facilitate the exploration of the codebase by giving a pre-configured
visualization to the newcomer.

25

Preconfigured view of JFreeChart with Plot as entrypoint.
Displaying links of Plot reveals that XYPlot and CategoryPlot are

subclasses.

Adding XYPlot and CategoryPlot as entrypoints allows to display
other buildings forming a variability intense neighbourhood.

Scenario 2: The expert wants the newcomer to comprehend a subpart of the codebase for the newcomer
to be able to reuse it.

26

Future work

Real experts evaluation

Integration in an IDE

Add other metrics of code quality

⇒ gain new insights on how to better facilitate the identification of variability implementations

27

Visualization of Object-Oriented Variability Implementations as Cities
Johann Mortara — Philippe Collet — Anne-Marie Dery-Pinna

Reproduction package:

https://doi.org/10.5281/zenodo.5034199

OO variability implementations are
complex to identify and comprehend

VariCity provides a visualization
relying on the city metaphor of OO

variability implementations

Visualization exhibits zones of
high density of variability, in

classes and between classes

Get the paper:

https://hal.archives-ouvertes.fr/hal-03312487

Best artifact award of the VISSOFT / ICSME 2021 conferences!

VariCity website:

https://deathstar3.github.io/varicity-demo/

Obtained reproducibility badges

Open Research Objects

Research Objects Reviewed

